Study programmes / C-TIMS Timber Structures and Wood Building Construction / Applied Mathematics
Course code:AM-DI
Course title in language of instruction:Aplikovaná matematika
Course title in Czech:Aplikovaná matematika
Course title in English:Applied Mathematics
Mode of completion and number of credits:Exam (5 credits)
(1 ECTS credit = 28 hours of workload)
Mode of delivery/Timetabled classes:full-time, 2/2; part-time, 20/0
(full-time, hours of lectures per week / hours of seminars per week; part-time, lectures per period / seminars per period)
Language of instruction:Czech
Level of course:master; master continuing
Semester:SS 2018/2019 - FFWT
Name of lecturer:doc. Mgr. Robert Mařík, Ph.D. (examiner, instructor, lecturer, supervisor)
Prerequisites:State Bachelor Examination
Aims of the course:The aim of the course is to extend knowledge of the parts of mathematics needed in research and to introduce the mathematical tools and methods that are frequently used in solving problems in engineering, economy and science.
Course contents:
1.Multivariable function (allowance 28/28)
a.Introduction, partial derivatives
b.Differential operators in cartesian, polar and spherical coordiantes
c.Integral calculus in more variables
d.Line and surface integral

2.Differential equations (allowance 28/28)
a.Introduction to ordinary differential eqations, analytical and numerical solution
b.Fourier series
c.Partial diferential equations, introduction to mathematical physics

Learning outcomes and competences:
Generic competences:
-ability to analyse and synthesize
-ability to create new ideas (creativity)
-ability to work independently
-basic computing skills
-skilled at utilizing and processing information

Specific competences:
-Ability to analyze related rates problems.
-Ability to use calculus to solve basic optimization problems.
-Basic knowledge of integral calculus and its applications.
-Focusing on the core of the problem by neglecting side factors
-The ability of critical scoring

Type of course unit:required
Year of study:Not applicable - the subject could be chosen at anytime during the course of the programme.
Work placement:There is no compulsory work placement in the course unit.
Recommended study modules:none
Assessment methods:The course is finished with written exam (60 min.) to detect the level of knowledges and mathematical skills. Both theoretical understanding (50%) and ability to compute and solve problems (50%) are included in the test. Samples of the tests are available to and the content covers the topics from course syllabus.
Learning activities and study load (hours of study load)
Type of teaching methodDaily attendanceCombined form
Direct teaching
     lecture28 h12 h
     practice28 h12 h
     preparation for exam60 h60 h
     preparation for regular assessment24 h56 h
Total140 h140 h

Basic reading list
  • DOŠLÁ, Z. -- LIŠKA, P. Matematika pro nematematické obory s aplikacemi v přírodních a technických vědách. 1st ed. Praha: Grada Publishing, a.s., 2014. 304 p. ISBN 978-80-247-5322-5.
  • MAŘÍK, R. Inženýrská matematika (nejen) pro krajináře.  [online]. 2007. URL:;zobrazit=360;typ=opora.
  • MAŘÍK, R. Diferenciální rovnice a autonomní systémy. 1st ed. Brno: Mendelova zemědělská a lesnická univerzita v Brně, 2009. 103 p. ISBN 978-80-7375-334-4.
  • MAŘÍK, R. -- TIHLAŘÍKOVÁ, M. Online služba Mathematical Assistant on Web.  [online]. 2007. URL:
  • KVASNICA, J. Matematický aparát fyziky. 2nd ed. Praha: Academia, 1997. 383 p. ISBN 80-200-0603-6.
Recommended reading list
  • NAVRÁTIL, M. Matematika: diferenciální a integrální počet funkcí dvou a více proměnných. 2nd ed. Brno: Mendelova zemědělská a lesnická univerzita v Brně, 2005. 123 p. ISBN 80-7157-903-3.
  • REKTORYS A SPOLUPRACOVNÍCI, K. Přehled užité matematiky I a II. Prometheus, 1995. 1604 p. ISBN 80-85849-72-0.
  • SAMARSKIJ, A. -- TICHONOV, A. Rovnice matematické fysiky. Praha: Československá akademie věd, 1955. 765 p.
  • ARSENIN, V J. Matematická fyzika. Bratislava: Bratislava Moskva : Alfa Mir, 1977. 432 p.