Study programmes / B-EPA Economic policy and administration / Mathematics I
Course code:MT1
Course title in language of instruction:Matematika I
Course title in Czech:Matematika I
Course title in English:Mathematics I
Mode of completion and number of credits:Exam (5 credits)
(1 ECTS credit = 28 hours of workload)
Mode of delivery/Timetabled classes:full-time, 2/2; part-time, 16/0
(full-time, hours of lectures per week / hours of seminars per week; part-time, lectures per period / seminars per period)
Language of instruction:Czech
Level of course:bachelor
Semester:WS 2018/2019 - FBE
Name of lecturer:Mgr. Veronika Blašková, Ph.D. (examiner, instructor)
Ing. Martina Čampulová, Ph.D. (examiner, instructor)
RNDr. Marie Forbelská, Ph.D. (examiner, instructor)
doc. Mgr. David Hampel, Ph.D. (examiner, instructor, lecturer, supervisor)
Mgr. Tomáš Konderla, Ph.D. (examiner, instructor)
RNDr. Petr Rádl (tutor)
RNDr. Dana Říhová, Ph.D. (examiner, instructor)
Ing. Jakub Šácha, Ph.D. (examiner, instructor)
RNDr. Lenka Viskotová, Ph.D. (examiner, instructor, lecturer)
Prerequisites:not Aplied Mathematics I
Aims of the course:Attainment of a desired level of logical thinking abilities and mathematical knowledge and skills needed for solving everyday economic problems and business situations.
Course contents:
1.Linear Algebra (allowance 12/12)
a.Vector spaces
d.Systems of the linear equations
e.Matrix algebra

2.Differential Calculus of One Variable (allowance 16/16)
a.Functions and their properties.
d.The derivative
e.Applications of derivatives: L'Hospital's rule
f.Applications of derivatives: Graphical behavior of functions from derivatives

Learning outcomes and competences:
Generic competences:
-ability to apply knowledge
-ability to solve problems
-ability to work independently
-basic computing skills
-general knowledge

Specific competences:
-Student is able to describe properties of function and analyze it. Furthermore, from graph derivate their properties.
-Student knows how to use operations with matrices and determinants for solving of systems of linear and matrix equations.
-Student knows to calculate limits and derivatives of one variable functions and interpret it on function graphs.
-Student knows to use derivatives for finding of extreme function values, i.e. its minimums and maximums.
-Student will acquire properties and operations with matrices and determinants. This knowledge is necessary for solving of linear programming problems.

Type of course unit:required
Year of study:Not applicable - the subject could be chosen at anytime during the course of the programme.
Work placement:There is no compulsory work placement in the course unit.
Recommended study modules:none
Assessment methods:The examination consists of two parts, a test and a written exam. To pass the examination, a student has to achieve at least 50 % in both parts of the examination.
Learning activities and study load (hours of study load)
Type of teaching methodDaily attendanceCombined form
Direct teaching
     lecture28 h16 h
     practice28 h0 h
     preparation for exam56 h88 h
     preparation for regular testing28 h36 h
Total140 h140 h

Basic reading list
  • RÁDL, P. -- MOUČKA, J. Matematika pro studenty ekonomie, 2., upravené a doplněné vydání. Praha: Grada, 2015. 272 p. ISBN 978-80-247-5406-2.
Recommended reading list
  • Thomas' calculus. Pearson, 2016. 1 p. ISBN 978-1-292-08979-9.
  • ČERNÁ, B. Matematika - lineární algebra. 4th ed. Brno: Mendelova zemědělská a lesnická univerzita v Brně, 2007. 129 p. ISBN 978-80-7375-080-0.
  • BAUER, L. -- LIPOVSKÁ, H. -- MIKULÍK, M. Matematika v ekonomii a ekonomice. 1st ed. Grada, 2015. 352 p. Expert. ISBN 978-80-247-4419-3.
  • SYDSÆTER, K. -- HAMMOND, P J. -- STRØM, A. Essential mathematics for economic analysis. 4th ed. Harlow: Pearson Education, 2012. 745 p. ISBN 978-0-273-76068-9.
  • MUSILOVÁ, J. -- MUSILOVÁ, P. Matematika I: pro porozumění i praxi : netradiční výklad tradičních témat vysokoškolské matematiky. 2nd ed. Brno: VUTIUM, 2009. 339 p. ISBN 978-80-214-3631-2.